
A Large Scale Drupal Guide

BEHAVIOR-DRIVEN  
DEVELOPMENT

                  POWERED,
COMMUNITY DRIVEN

Collaborative efforts
get big results

Bene�tting Organizations Through Collaboration
Large Scale Drupal is a strategic alliance that enables organizations using Drupal to collaborate

on signi�cant enhancements to the platform through networking, knowledge sharing, funding, 

development, and engagement with the Drupal community.

Learn more about building success with the leading organizations running Drupal.

LargeScaleDrupal.com



This guide represents the collaborative efforts of many 

individuals and organizations participating in Acquia’s 

Large Scale Drupal (LSD) Program.a It is based on 

interviews with and input from over half a dozen LSD 

Members, two of our LSD Partners, and several  

individuals at Acquia.

Thank you all for your participation, funding,  
and support!

Special thanks to: Melissa Anderson at Tag1  

Consulting,b and the lead author of this document; 

Steve Graham and Nate Swart at Acquia,c for their 

leadership and dedication to completing this guide 

and related software projects; the many LSD Mem-

bers, including McKesson Specialty Healthd and Dennis 

Publishinge for  allowing us access to their teams and 

providing insight and feedback on this  

document, for their work with BDD, and for their 

funding and support of the LSD Program; and to our 

two founding LSD Partners, Appnovationf and Phase2,g 

for contributing to this document, and for dedicating 

resources and funding to build out and work on BDD 

software projects and tooling over the last year, in  

conjunction with LSD Members. (Please see the  

inner back cover for more information about these  

projects, including video demos and links  

to source code.)

We’d also like to thank Drupal Watchdogh for its help 

and support editing this document, and for printing, 

publishing, and distributing this guide (also available 

online at http://wdog.it/lsd/bdd) on behalf of Acquia’s 

Large Scale Drupal Program.

LSD Contact Information
For more information about how your organization can benefit 

from and join the Large Scale Drupal Program, please visit our 

website LargeScaleDrupal.com or contact:

•  Michael Meyers - VP, Large Scale Drupal 

michael.meyers@acquia.com 

BDD Contact Information
For more information about, or help with adopting and  

leveraging Behavior Driven Development at your organization, 

please contact our contributing LSD Partners:

•  Adriana Zeman - VP, Acquia, Consulting Services  

adriana.zeman@acquia.com

•  James Heise - Sr. Director, Global BD, Appnovation  

james@appnovation.com

•  Frank Febbraro - CTO, Phase2  

frank@phase2technology.com

•  Peta Hoyes - COO, Tag1 Consulting / Drupal Watchdog  

peta@tag1consulting.com

Acknowledgements

a Acquia Large Scale Drupal: http://www.largescaledrupal.com/ 

b Tag1 Consulting: http://tag1consulting.com/ 

c Acquia: https: //www.acquia.com/ 

d McKesson Specialty Health: https://www.mckessonspecialtyhealth.com/ 

e Dennis Publishing: http://www.dennis.co.uk/ 

f Appnovation: http://www.appnovation.com/ 

g Phase2: http://www.phase2technology.com/ 

h Drupal Watchdog: http://drupalwatchdog.com/  

Table of Contents

Introduction .............................................................................................................. 2

Background ...............................................................................................................3

Discovery and Development ....................................................................................4

Conversations .....................................................................................................4

Common Language ............................................................................................4

Focus on the User ...............................................................................................6

Identifiable Value to the Business ..................................................................... 7

Summary .............................................................................................................8

Automation ..............................................................................................................9

When to Automate .......................................................................................... 10

Functional Tests and Continuous Integration .................................................. 11

Workflow .................................................................................................................12

Advice from LSD Members .................................................................................... 14

What Not to Do ..................................................................................................13

Emerging Best Practices ...................................................................................15

Conclusion ................................................................................................................17

Additional Resources ............................................................................................. 18

Related LSD BDD Software Projects and Tooling ..................................................21

©
 2

01
4 

M
ic

ha
el

 M
ey

er
s

A Large Scale Drupal Guide  |  1  



Acquia’s Large Scale Drupal Program (LSD) is a strategic 

alliance that enables organizations using Drupal to  

collaborate on significant enhancements to Drupal – 

through networking, knowledge sharing, funding,  

development, and engagement with the Drupal  

community. By working together, our Members and  

Partners create an economy of scale, driving down the 

cost of building and maintaining software;  through  

the input of many minds and perspectives, we help each 

other create more robust software systems and run more 

effective organizations.

Our LSD Members and Partners meet regularly to discuss 

and identify common problems and shared needs, and 

work together on open source solutions and resolutions. 

At the end of 2012, during our Q4 LSD Technology  

Leadership Conference, we introduced the concepts be-

hind Behavior Driven Development (BDD) to our Members 

and the Drupal Community. BDD is a next-generation 

development methodology that complements and extends 

agile and lean systems, with a strong automated testing 

component. BDD enables organizations to iterate quickly, 

release software faster, and help ensure that the  

software we create meets the needs of our stakeholders.

In 2013, through funding and resources provided by  

our Members and Partners, LSD helped build out and 

integrate the underlying BDD tooling for Drupal. We also 

built a comprehensive test suite for Drupal.org, both to 

facilitate upgrading our home on the web to Drupal 7 

and to provide an example of BDD implementation that 

others could leverage and build on.

We’ve hosted several BDD webinars and presentations to 

help Members understand its methods and benefits,  

and enable them to adopt and leverage BDD concepts 

and tooling. 

In 2014, we continue to fund and support several  

software projects. (Please see the "LSD BDD Software 

Projects and Tooling" section on the inner back cover and 

the Additional Resources section of this document for 

more information on these and other tools.)

Imagine the perfect project: the  

organization knows what it needs, 

what it wants, and the difference 

between the two; the milestones are 

reasonable; the work is interesting, 

and communication is prompt, clear, 

and effective; attention is given to 

design and user experience, with 

enough time and budget for  

adequate discovery, iteration, testing, 

and training; and last, but not least, 

technical resources and personnel are 

available and reliably allocated.

Many of our LSD Members and Partners have adopted 

aspects of BDD with great success and we’ve highlighted 

some of their stories and lessons learned in this  

document. The goal of this guide is to introduce BDD  

to a broader audience, to help you better understand  

the methodologies, tooling, and benefits to your  

organization, and to enable your organization to quickly 

get up and running with BDD. The Drupal Community is in 

the process of adopting BDD as a new standard for Drupal 

8 Core and contributed module development; moving  

forward, it will become even more important to the 

platform (both Drupal 7 and Drupal 8) and to the entire 

Drupal Community.

LSD is not a profit center for Acquia. It is a Member- and 

Partner-funded and driven program, managed by Acquia’s 

Office of the CTO (OCTO). There are currently over  

50 organizations around the globe that are participating 

in the LSD Program, representing some of the world’s 

largest websites and most well-known brands running 

Drupal. This overview guide, and the related open source 

software projects, are funded and created by our  

Members and Partners, with additional support and 

funding provided by Acquia. To learn more about joining 

and supporting the LSD Program, and our projects and 

initiatives, please visit our website at LargeScaleDrupal.

com or contact me by email. We hope you will join us in 

our collaborative efforts.

Michael Meyers 

VP, Large Scale Drupal 

michael.meyers@acquia.com

Introduction Background

As we know, rarely do all these elements converge in the same project. Usually, limitations in one or more area nudge a  

project off-track, sometimes disastrously. Even under the best of circumstances, projects grow and change during their  

lifespan in a variety ways – some expected, some that really should have been expected, and others that no one could  

have foreseen.

Finding a way to mitigate the risks of software  

development and ensure that the final product or  

service delivers needed business value is at the heart  

of Behavior-Driven Development (BDD). 

BDD has a rich and specific history, but it comes down  

to three core principles:

•  Teams need conversations throughout the software 

development process to focus everyone on discovering 

and delivering value.

•  Everyone on the team should describe application  

features using a common language to reduce ambiguity 

and facilitate understanding.

•  Every feature should have an identified, verifiable 
value to the business or organization.

2  |  Behavior-Driven Development A Large Scale Drupal Guide  |  3  

CC
 IM

A
GE

 C
O

U
RT

ES
Y 

O
F 

GÁ
BO

R
 H

O
JT

SY
 O

N
 F

LI
CK

R

CC
 IM

A
GE

 C
O

U
RT

ES
Y 

O
F 

GÁ
BO

R
 H

O
JT

SY
 O

N
 F

LI
CK

R
 •

 C
C 

IM
A

GE
 C

O
U

RT
ES

Y 
O

F 
GÁ

BO
R

 H
O

JT
SY

 O
N

 F
LI

CK
R



Conversations
Initial conversations in software development are typically rife 

with the unknown. While the business analysts and marketers 

are generally (but not universally) able to articulate what they 

want and what business problems they’re trying to solve, they 

may know little about what’s possible either with software 

in general, or with the particular technology in question. They 

may not know what questions to ask, and they probably have 

little feel for the comparative effort involved to implement one 

feature over another. They may present problems that developers 

haven’t solved before, and they sometimes assume that  

developers understand the business needs. 

Meanwhile, the technical team may assume that the business 

side has a fundamental understanding of web sites or the 

application they’re trying to build. As stakeholders learn what’s 

possible, they can make better connections and decisions. As 

everyone’s understanding grows, the initial requests change.

BDD encourages the conversations required to navigate  

complexity, uncertainty, and growth throughout the development 

cycle. It specifically asks everyone involved to focus attention 

on the behavior of the application as it will be experienced by 

the user, and it provides a formalized, accessible language that 

everyone – business analysts, stakeholders, project managers, 

developers, trainers, technical writers, quality control engineers – 

can understand and use in order to have those conversations.

"The Three Amigos" is a great way to ensure that conversations 

happen. The Three Amigos approach can be more1 or less2  

formalized, but essentially, it means having three key  

stakeholders collaborate on features before moving  

into development:

•  a business analyst or product owner

•  a developer

•  a tester 

Discovery and Development

Common Language
Common language helps the whole team  

understand what’s expected from the  

application. While a stakeholder may describe in 

elaborate detail the pains they’ve experienced 

meeting HIPPA and FERPA requirements,  

and the developer grapples with the security 

implications of storing confidential data (in 

terms of encryption, password strength, and 

access control), the actual users, who may not 

be represented early or at all in the process, get 

left in the cold. So whose language is right?  

Although different team members need to 

work with the nomenclature of their domain, 

the key is to always keep in mind what’s  

important: What the user sees and does.

To do this, BDD uses Gherkin – a plain language template, 

not a pickle – to express how the feature will behave 

under various circumstances.

Features
A scenario takes the form of a user story, something 

many software teams already produce as part of their 

requirements-gathering. It looks like this:

Feature: Title
  As someone who will use the software
  I need or want some functionality
  So I can achieve something of value

Sometimes, you’ll see documentation of a slightly  

different structure, which puts the emphasis on the  

value rather than the user:

Feature: Title
  In order to achieve something of value
  As someone who will use the software
  I need or want some functionality

Either syntax is fine. The structure is intended to  

ensure you’ve:

•  provided a quick name for the user activity; 

•  articulated the business value;

•  identified the primary target user;

•  described what that user needs or wants to do.

To illustrate with a concrete example, let’s look at a  

relatively straightforward request: staff blogs.

Example:

Feature: Post blog entry

  In order to increase the visibility of  
    my department’s work 
  As a staff member
  I need to be able to post blog entries

Once the feature is written, the Three Amigos expand  

on the story using clear relevant scenarios to illustrate 

the expectations.

Probing for Different Conditions: Scenarios
Scenarios are BDD’s powerful way of reducing the  

ambiguity that comes when the business or marketing 

stakeholders describe one thing and project managers  

or developers envision something else. Scenarios line  

up the entire team behind the application user’s  

electronic device. 

The first scenario typically begins by describing what the 

user will experience if everything is done as expected. For 

the main scenario – for the staff blog feature – the user 

will log in, obtain the right access, be in the right place  

to see the "Create" link, fill out all the required fields 

appropriately, and publish. Voilà!

Example:

Feature: Post blog entry
  In order to increase the visibility of  
    my department’s work 
  As a staff member
  I need to be able to post blog entries
Scenario: Successfully publish blog entry
  Given I am logged in as a staff member
  And I am on my dashboard
  When I create a blog
  And I publish it
  Then the teaser should appear on the  
    homepage
  And teaser should link to the full post

This first scenario, like all other scenarios, consists of 

three parts:

Set the scene: the Givens

Givens set the scene and establish where to begin. The 

"Given" part of the staff blog describes the right user 

with the right role in the right place:

  Given I am logged in as a staff member
  And I am on my dashboard

PU
BL

IC
 D

O
M

A
IN

 IM
A

GE
 S

PA
CE

FL
IG

H
T 

N
A

SA
.G

O
V:

 S
TS

-1
24

_L
A

U
N

CH
_F

R
O

M
_A

_D
IS

TA
N

CE

4  |  Behavior-Driven Development A Large Scale Drupal Guide  |  5  



Change the scene: the When

With the context established, the "When" part of a  

scenario describes what the user might do:

  When I create a blog
  And I publish it

Describe the response: the Then

The "Then" section describes one or more responses 

the application should perform in reaction to the user’s 

"When" entries.

  Then the teaser should appear on  
    the homepage
  And the teaser should link to the  
    full post

The goal of the feature is to "increase the visibility of my 

department’s work." There’s nothing inherent in that goal 

that prescribes exactly where or how that should happen, 

so it’s good to prod a little at this point in the conversa-

tion: Is there anything else that the user should observe? 

Does information about the blog entry appear on other 

pages? Should it be highlighted on a list of recent  

entries? Included or excluded from site search? Archived 

at some point? Available via RSS? Should it go through  

a company approval process?

By asking these kinds of questions, we can draw out 

various assumptions: Don’t all blogs have a Recent posts 

lists on every page? Don’t they automatically let you tag 

an entry with a category and then find related entries? 

Don’t they have a tag cloud – those things where the 

words get bigger when there are more entries in a cate-

gory? Don’t users need approval before they can publish? 

(Maybe, maybe not.)

Even something as common and seemingly clear-cut as 

a blog often contains a surprising amount of ambiguity. 

Imagine more complex features, like departmental pub-

lishing workflows, medical records access, or online com-

merce. It’s the conversations along the way that clarify 

unspoken assumptions, acknowledge that new requests 

will happen as the project develops and understanding 

grows, and allow further requests based on their value to 

the business.

Useful questions for imagining scenarios are:

 What about...?

 What if... ? 

Focus on the User
Feature files maintain a focus on what the user does and 

how the application responds. A critical component of 

Gherkin style dictates that you speak with language that 

the target user can reasonably be expected to under-

stand. This user-centric focus means that everyone will 

be drawn back from their domains of expertise to think 

about what the target user of the feature needs. There’s 

a wide variety of users, too. Features intended for a site 

visitor may differ from those intended for site admin-

istrators, editors, or moderators. As the user varies, it’s 

possible the language used in a scenario will vary as well.

Additional Scenarios
What if the blog author doesn’t fill out a required field? 

What if the author is logged in but doesn’t have permis-

sion to create a blog? What will that experience be like? 

Although these paths are less desirable than the  

successful outcome, the application’s behavior should 

help the user along the correct path, and BDD is the first 

and primary place you define what that ‘happy path’ 

looks like. The idea behind scenarios is NOT to hunt 

exhaustively for every edge case, but rather to support 

users on their way to the desired outcome.

Keep in mind that assumptions about the application 

behavior can vary a lot. For example, a blogger may be 

technically competent, but have little time or patience 

to get bogged down with too many required fields. Also, 

it’s critical that authors can easily save and find drafts, 

because they’re not likely to finish them in one sitting.  

Developers, however, may assume that the title is re-

quired because it’s what lets the user locate and navigate 

back to their work. Scenarios help specify what should 

happen in those cases. Here, the business value would 

suggest that an empty title field should save the work 

with a placeholder, perhaps something like "Untitled" 

with a link to the blog.

How Big is a Feature?
Features should be fairly granular. Each feature is elabo-

rated on in  usually no more than five to seven scenarios; 

more than that, and it’s likely the feature needs to be 

broken down into smaller components. If you’re used to 

thinking about features on a larger scale, this can take 

some practice. You may find that what you thought  

of as a feature is more like a feature set: several  

smaller features that work together to deliver  

complex functionality.

The discipline of creating smaller features and describing 

the scenarios with formalized language helps untangle 

complex interwoven descriptions, or vague and general 

requests, turning them into something that a developer 

can effectively focus on implementing.    

Identifiable Value to the Business
Sometimes, it can be quite a challenge to focus on the 

behavior of the user and, at the same time, state that 

behavior’s value to the business. Sure, it’s easy enough 

when what the user wants coincides with what the busi-

ness wants them to do, but quite often that’s not the 

case. In a blog post3 from 2008, Liz Keogh describes just 

such an at-odds situation. 

Her example:

As a user
I want to fill in a captcha box
So that... what? No! What a waste of  
   my time!

She suggests this is better written as:

In order to stop bots from spamming  
  the site
As a member of the commercial team,  
  I want users  
  to fill in a captcha box

The formula in these cases look more like:

  In order to <deliver some business  
    benefit>
  As a <role> I want <some other role>
  To <do something, or use or be  
    restricted by some feature>

Clearly identifying the people who are concerned about 

the value of a feature has a long-term benefit. When 

something affects how that feature works, it’s explicit 

who needs to be involved in the conversation.

In pursuit of delivering value, if there’s a consistent  

tension between what the user wants and what the  

organization wants from the user, it’s worth taking a  

look at how to meld the two.

When Does All This Happen?
You can begin to capture features in the very early stages 

of a project – long before you decide to move forward with 

software development – even though the language is not 

yet formalized; it may just be a laundry list of big-ticket 

items or detailed steps to support organizational  

processes. You may even have a variety of scenarios.

Keep in mind that the quite detailed development of  

scenarios is usually saved until the time when the feature 

has actually been prioritized for development. If you begin 

too early, the detail can impede learning and listening, 

which increases the chance of spending time developing 

the wrong functionality or detailing something that never 

gets implemented at all. At the same time, if you hear 

about key scenarios early on and you can capture  

important ones, they can help you understand the  

project’s complexity.

The magic of the Internet, the work of the user 
experience engineer, is to find the intersection of 
the desire path – the motivation driving someone 
to visit your site – with the desired path, or any of 
the potential actions you hope a visitor will take to 
support your organizational goals. 
http://wdog.it/lsd/1/thinkshout

“

”

6  |  Behavior-Driven Development A Large Scale Drupal Guide  |  7  



Despite BDD’s emphasis on 

discovery and communication, 

and the tremendous value 

these provide to organizations, 

it’s often the automation  

tools that get people excited 

about BDD. 

Who Does What?
It’s a completely reasonable BDD workflow to have  

something like the following.

•  Business, Developer, and Tester work on features,  

feature prioritization, and scenarios.

•  Developers implement features and may come back 

with new scenarios for clarification.

•  Testers use the scenarios as guides to ensure that the 

actual implementation meets the acceptance criteria.

All of this can be done without any special tools or 

automation at all. An organization, by committing to the 

collaborative process, can save money and reduce bugs.

Am I Doing This Right?
In the early stages, the structure of the language, who 

exactly records it, and other minutia, take a back seat to 

the primary purpose: discovering what you don’t know. 

If your practices hinder having the conversations and 

learning what you need to know to deliver value, then it’s 

time to re-evaluate. The author of Behat, Konstantin  

Kudryashov, has a great slide deck that helps focus on 

using the tools well: http://wdog.it/lsd/1/example

Summary
Driving development of your technology with BDD helps 

make implicit assumptions explicit. The following points 

help structure conversations to reduce the unknown:

•  Name the business value and the features user.

•  Discuss with the key stakeholders how those features 

behave under different circumstances.

•  Consider features in a fine-grained manner at the 

time they’re headed toward implementation.

•  Use language that everyone on the team can  

understand.

•  Focus on the value of the feature to the business.

The conversations increase the chance that valuable  

features are being implemented and will require  

less rework.

Tools
There are numerous software tools out there which can 

map Gherkin steps to code that will open a web browser 

and actually click the links and fill out the forms  

described in the scenarios, but notable practitioners  

warn strongly against using the structured language  

and automation tools before making the necessary  

philosophical and process adjustments to implement 

BDD practices at your organization.

Once the commitments to new ways are made and 

adjustments are in place, there’s an incentive to consider 

automation. Within the Drupal community, Behat4 and 

Mink5 are obvious tool choices. Because they’re written in 

PHP, Drupal developers don’t need to context-switch to 

a different programming language in order to automate 

steps. The Drupal community has embraced them with 

an extension to Behat itself6 (funded and supported in 

part by LSD Members) that allows the community to 

share code supporting common Drupal-specific behaviors, 

as well as other modules to assist in using Behat with 

Drupal.7 As of Drupal 8, BDD tools will be incorporated 

into Drupal core,8 distributed with the platform, and BDD 

practices will become a standardized aspect of the Drupal 

community development process. There’s a lot of value in 

collaborating on the underlying toolsets, and LSD Mem-

bers have funded multiple projects to share upfront R&D 

costs as well as long term support. So many elements of 

automation are reusable. By sharing work, we can create 

resources that solve our common needs and focus  

independent efforts on what is unique to an application.

Automation

Manually clicking through applications is tedious and 

error-prone; a surprising number of obvious bugs make it 

all the way through to production, there to be reported by 

end users. The promise of automation to simulate user 

interactions and allow routine verification that things are 

working as expected is a powerful lure.

Most organizations need (or want) to iterate quickly and 

be able to roll out frequent changes to their applications 

and web sites in order to meet customer demands and 

be competitive. The automation of tests, especially for 

the features which supply major business value, provides 

professionalism and confidence with each deployment; 

well-done automation means the team can focus more 

effectively on the new features. 

CC
 IM

A
GE

 C
O

U
RT

ES
Y 

O
F 

ST
EV

E 
JU

RV
ET

SO
N

 (J
U

RV
ET

SO
N

) O
N

 F
LI

CK
R

CC
 IM

A
GE

 C
O

U
RT

ES
Y 

O
F 

R
O

BE
RT

 S
. D

O
N

O
VA

N
 (B

O
O

LE
A

N
SP

LI
T)

 O
N

 F
LI

CK
R

  •
 C

C 
IM

A
GE

 C
O

U
RT

ES
Y 

O
F 

W
IN

DE
LL

 O
SK

AY
 (O

KS
AY

) O
N

 F
LI

CK
R

8  |  Behavior-Driven Development A Large Scale Drupal Guide  |  9  



When to Automate
Automation increases the number of times that code can 

be tested, which allows bugs to be detected and resolved 

earlier in the cycle. The more valuable or stable a feature 

is, or the more often it is used, the better a candidate for 

automation it becomes.

Automation is equally important to reduce cognitive load 

on the team by minimizing the amount of information, 

interaction, and context switching required when  

members are involved in complex learning and creation.

Automation should:

•  Help developers focus as they develop.

Front-end developers work on the theming for a page 

that depends on complex user actions. They need to click 

through the application to see that the combination of 

javascript, ajax, and CSS is coming together as expected. 

Describing the steps once in Gherkin – and executing 

them automatically – allows these developers to keep 

their focus on the code they’re writing; it doesn’t matter 

what programming languages they know.

A back-end developer may have the same need. More 

than that: with complex tasks like E-commerce or  

editorial workflow, it  can be tempting to make a one-line 

required code change and then skip  manual verification 

that the complete process is working. With a quality  

automated test in place, we’ve found developers  

are more likely to  check their work and pass along  

higher-quality code.

•  Provide living documentation and  
organizational resilience.

When automated functional tests are run at every de-

ployment, a change in requirements that causes a test 

to break will be identified; when there’s an organizational 

commitment to automation, the test will be updated to 

reflect the change, so that a new arrival can discover  

the latest intended functionality. Automation provides 

incentive to keep features and scenarios up-to-date, 

increasing organizational resiliency. A new team member 

has access to current information about what a feature is 

expected to do.

•  Increase the likelihood that developers will pass  
along better tested code.

The context switch between writing code and testing  

the user interface is significant. It’s much easier for a 

developer to test only a small part of what might be 

affected by his or her changes or to verify behavior as a 

user with elevated permissions. Running the automated 

tests before passing along code can expose problems and 

allow them to be addressed long before QA looks at the 

new feature, eliminating delay.

•  Produce better-constructed sites.

Code that is hard to test is often difficult to maintain. 

Just as unit testing encourages good design at the code 

level, functional tests can promote more consistent and 

more coherent HTML output. The same practices that 

facilitate easy CSS markup and the use of automated 

screen readers also support functional tests. The  

performance issues that become apparent when running 

functional tests affect users too, so focusing on clean, 

fast-loading code in pursuit of business value helps the 

overall app.

•  Increase frequency and quality of deployments.

The point has been made, but it’s worth repeating: A 

well-automated test suite ensures that areas of high 

business value are tested with every deployment. This 

allows the human testers to focus on new areas, as well 

as maintain, refactor, and expand automated testing. 

Functional Tests and  
Continuous Integration
There’s value to having developers and testers run tests 

locally, but most often, organizations will incorporate 

tests into a Continuous Integration (CI) system. Many 

variations on CI exist, but a professional development 

workflow looks something like this:

•  Developers work in their local environment, using a 

version control system.

•  When they’re ready, they push their code to a shared 

server (often called something like "development" ).

•  Before that code is accepted on the development server, 

unit and integration tests are automatically run to 

ensure the code is functional, preventing a developer 

from pushing a regression that will be picked up by the 

rest of the team. Carefully selected functional tests can 

be added as well.

•  Code is pushed to a quality assurance server, where 

manual verification is done. Sometimes acceptance 

demos are performed there.

•  Prior to a release, code is staged and the full suite  

of tests — unit, integration, functional, and manual —  

is run.

•  Code is deployed to one or more production servers.  

•  Post-production verification is done, including manual 

and less-intrusive automated functional tests.

Functional tests can also be integrated into the  

deployment process, but this should be carefully done, 

with special attention to:

•  Execution time Functional tests are much slower than 

unit tests because they involve actual simulation of 

user actions. It’s unwise to run every functional test 

each time a developer pushes code. Full test runs are 

more appropriate for pushing to a staging environment 

prior to release. Wise tagging can either include tests 

that should be run or exclude tests that need not run at 

this time.

•  Robustness Nothing will discourage the use of  

functional tests like writing brittle automation that 

causes failure when everything is actually just fine. A 

common example of this is writing a test that relies on 

seeing text on a page that is highly subject to change. 

Using the blog example, if someone writes a test that 

checks for a blog title on a “Recent Posts” list, that title 

is definitely going to change in the next week or two, 

causing a false failure. Unreliable services can cause 

this, too. If there are known performance issues with 

other services that cause excessively slow-loading  

pages, tests will fail. Don’t put anything but the most 

valuable and robust tests between a developer and 

pushing code. Before a deployment, maybe, but  

not when change and collaboration is the most  

critical activity.

Kinds of Testing
Because there is a lack of consistency in the way  

different types of testing are defined, let’s place 

these on a continuum:

•  Unit tests are written by programmers for  

programmers. They test at the function or method 

level, and are intended to encourage loosely- 

coupled, modular code. They ensure the  

independence of code segments in a way that 

integration tests do not. 

•  Integration tests are also written by programmers 

for programmers. They check the interaction of 

functions or methods working together for the 

same reason as unit tests: to verify that code 

works as expected, especially when changes are 

made elsewhere.

•  Acceptance tests are written as a collaborative 

effort by the team to ensure that the application 

meets the business objectives and continues to 

deliver the business value when changes are made 

elsewhere in the system (such as after a security 

update or the introduction of a new feature).  

Because they describe user behavior, they can 

either be performed manually or automated.

•  Functional tests check the application’s  

functionality with interface-driven tests that  

are independent of the underlying code. This  

includes the automation of acceptance tests.

•  Regression tests include unit, integration, and 

functional tests. Automated or manual, they are 

intended to identify when things stop working  

the way they used to.

10  |  Behavior-Driven Development A Large Scale Drupal Guide  |  11



Workflow

CC
 IM

A
GE

 C
O

U
RT

ES
Y 

O
F 

PH
IL

 R
O

ED
ER

 (T
A

BO
R-

R
O

ED
ER

) O
N

 F
LI

CK
R

 •
 C

C 
IM

A
GE

 C
O

U
RT

ES
Y 

O
F 

JE
FF

 K
U

BI
N

A
 (K

U
BI

N
A

) O
N

 F
LI

CK
R

12  |  Behavior-Driven Development 

CC
 IM

A
GE

 C
O

U
RT

SE
Y 

O
F 

A
N

U
R

A
G 

A
GN

IH
O

TR
I (

A
GN

IH
O

T)
 O

N
 F

LI
CK

R

A Large Scale Drupal Guide  |  13

Another common workflow emerges when you have an 

existing site and you’re looking to introduce automated 

regression tests. BDD doesn’t guide the development of 

new features yet. Instead, BDD tools are being introduced 

to make sure the existing features are still working. Busi-

ness value, discovery, and ensuring the team is delivering 

the right features, all take a backseat to automation. 

The work begins at a completely different phase. It’s  

normally undertaken because bugs are reaching the  

production web site with unacceptable frequency. The 

team is under pressure to reduce regressions, often  

at the same time they’re under pressure to deliver  

features faster.  

Developers or testers will then dig in to write some  

tests. They’re following an existing interface, so they 

tend to use prebuilt steps that are click-by-click and 

implementation-specific. The actual feature descriptions 

become hard to write without engaged participation from 

the business team, and they become correspondingly 

difficult to read. There may also be an impulse to crank 

out as much automated testing as possible, as quickly  

as possible, in an effort to restore a sense of control. 

Unfortunately, there isn’t always an effort to get the 

business team back into the loop and the major value  

of BDD isn’t realized.

A reasonable workflow under these circumstances is  

still possible. It might look like this:

•  Less-technical staff write the features and scenarios, 

doing their best to fit it into pre-existing steps.  

Projects like the BDD Use Case Editor are a huge boon, 

lowering the barrier to entry for writing and running 

the tests.

•  Developers use the tests to check their own work,  

improving the quality both of code and of tests.

•  QA uses the tests with an eye on their  

long-term value.

Organizations looking into Behavior-Driven Development 

are often unclear about who should do what and when, 

which makes sense. There is no single recipe. It is a highly 

contextual question and one that can be really conten-

tious in environments where everyone is already running 

at full capacity. It’s hard to learn new things without  

adequate time, and the development of the tests can 

be just as difficult as the development of the product, 

especially if you bypass the communication.

That said, here’s one way it might proceed:

•  Business, marketing, and/or sales will be discovering 

customer needs. They’ll be looking for areas of the 

unknown (as well as the known) and striving to find 

out what they need to initiate the project. They may 

begin user-stories themselves or that may happen 

later, but they’re beginning to discover requirements 

and can benefit from understanding the Gherkin 

format, even if they’re not writing them.

•  Project managers and business analysts will review 

features and begin working at the scenario level. They 

are likely NOT to have the click-by-click level of detail 

needed to use available pre-built steps  at this stage.

•  Developers will use the features and scenarios to  

implement the requirements. Where useful to that 

implementation, they may automate some scenarios.

•  QA will collaborate on maintenance and make sure 

that the tests are appropriate, robust, and maintain-

able, implementing additional automation.

•  Automated test failures can then be verified by 

anyone. A likely path is to have the initial failure 

interpreted by less-technical staff: someone who can 

manually see what happened and know if it’s either a 

desired change (and the test needs updating), a poor 

test that needs improved quality, or a problem with 

the application that requires developer intervention.

•  The project manager, scrum master, or QA person 

works with the business people to better understand 

the value of the feature, refactoring what  

was written.

•  Each deployment, more coverage is added, based on 

known vulnerabilities and the value of the feature to 

the business.

•  As the business people become familiar with the  

common language, new work begins to use that  

language and the full benefit of BDD can be realized.

In every workflow, regardless of when Behavior-Driven 

Development is introduced, support for the whole  

development process is necessary. It needs to be an  

entire team effort, regardless of where you begin.



Emerging Best Practices The DoctineDataFixtures9 extension to Behat allows  

you to both increase the isolation of tests and more  

efficiently set up the appropriate conditions for success. 

The Behat Drupal Extension also provides direct data 

setup via the Drupal API.

It’s okay to test important database content.
It’s true that not everything that is tested is  

encapsulated in code, but important content is managed  

in the database. When the content is critical to the 

organization, it’s okay to check for it with automated 

functional tests.

Create every scenario so it can be  
run independently.
Never allow one scenario to depend on another. It can be 

very tempting – especially if you’re not using fixtures to 

set up the Givens – but dependent scenarios prevent you 

from effectively tagging, as described below.

Dependent scenarios also create cascading failures: when 

the first scenario fails, every scenario that depends on 

it will fail, too, so you’re not only denied feedback about 

the functionality the scenarios describe, you also create 

noise that detracts from confidence in the tests, and you 

introduce latency, as the tests need to be run and re-run 

until the whole chain has been tested successfully.

Tag tests strategically.
Tagging tests allows you to run subsets to provide the 

right information at the right time.

@content Sometimes the ability to see specific data 

supplied by the database has a high business value.  

Likewise, ensuring that certain data is NOT visible is 

incredibly important, but this, too might rely on settings 

that exist in the database and are not encapsulated  

in code. When the data is important and is not code- 

related, tagging such scenarios makes it possible to run 

them alone or to exclude them when there’s a need to 

focus only on the code.

@smoke Different organizations use this tag differently, 

but the basic idea is that features and scenarios  

tagged @smoke are fast, reliable indicators that  

something very important isn’t working.

The complexity of software development itself 
– combined with differences in business goals, 
team skills, resources, and more – make it 
difficult to identify a single best practice.

The complexity of software development itself –  

combined with differences in business goals, team skills, 

resources, and more – make it difficult to identify a 

single best practice. Even those we list below will have 

exceptions, but they reflect the aggregate experience of 

individuals at six Large Scale Drupal Members, two LSD 

Partners, and Acquia.

Write the correct tests.
With appropriate unit tests and integration tests, which 

run much more quickly, the code base itself becomes 

more stable. Choose the scenarios you automate to run 

through the interface based on the business value of the 

feature. In addition, only run tests through a full browser 

where it’s necessary

Use fixtures to set up the Given conditions for 
scenarios to succeed.
Many folks start out using pre-built step definitions and 

then either:

1.  Use existing data in tests. Often such data is subject to 

natural and appropriate change over time. When tests 

fail because of expected changes in content, it doesn’t 

reflect a problem in the code and may not reflect a 

problem at all. Such failures reduce overall confidence 

in the value of the automated tests and, depending on 

organizational processes, distract developers from their 

tasks at hand. 

2.  Supply needed data by clicking through the interface to 

create it. There are situations where there’s no  

way around doing this, such was when you have no 

privileged access to the database; however, creating 

data this way is slow, error-prone, and quickly  

becomes redundant.

To provide perspective on implementing Behavior-Driven  

Development, or using the PHP tools Behat and Mink to facilitate 

automated functional tests, we interviewed several LSD  

members about their experience.

We found that organizations whose primary goal was to  

refine their business requirements were more satisfied with  

the outcome of both requirements-gathering AND automation 

than those who did not emphasize improved discovery and  

stakeholder involvement.

We also found that organizations with multiple sites based on  

an internal Drupal distribution were generally more satisfied  

with their automation efforts than organizations with a single 

complex site. This is partly because they were able to reuse more 

of their scenarios, but also because the focus on reuse forced 

them to write more robust tests. 

What Not to Do
Don’t implement with just part of the team.
For everyone on the team to benefit from BDD, everyone  

needs to participate. Making the process work for developers is 

especially key: they sit at the crucial point where they need to  

understand what’s been asked and can make the application 

more testable. They know what automation helps them, and 

have a stake in reliable feedback.

Don’t rely on pre-built steps.
Pre-built steps become hard to read, incorporate too much  

implementation detail, and too easily rely on data that’s expected 

to change. 

Don’t strive for coverage.
When it comes to unit-testing, it may be feasible to think in 

terms of code coverage. When it comes to automating functional 

tests, they are slower to perform and there is a seemingly infinite 

variety of things to test. Focus on value, not coverage, and tag 

your tests so that you can selectively choose which groups to run 

in a given context.

Never rely on data from other scenarios.
Avoid having one scenario create content that  

subsequent scenarios depend upon, where failure 

will cascade when there may be no problem with 

the subsequent scenarios.

Don’t make features too specific.
Features should be able to contain additional  

related scenarios as they come up and still make 

sense. For example, what is the value of meta tags, 

not just in one context, but across the site?

Don’t expect BDD tasks to fit into the 
existing schedule.
Teams need time to learn the new tools, auto-

mate scenarios, respond to failures, and refactor 

for greater reuse and reliability. This needs to 

be accounted for in sprint schedules. The overall 

improvements to your development process and 

ability to execute faster are worth the small  

upfront investment! 

Advice from LSD Members

CC
 IM

A
GE

 C
O

U
RT

ES
Y 

O
F 

KA
TH

LE
EN

 M
U

RT
A

GH
 (C

EA
R

DA
CH

) O
N

 F
LI

CK
R

 •
 ©

20
14

 M
ic

ha
el

 M
ey

er
s

14  |  Behavior-Driven Development A Large Scale Drupal Guide  |  15

“
”



The diversity of team structures and project needs varies 

massively. Comparing a project that requires 50 days of 

manual regression testing – and which has the staff to 

support that intensity of QA – with a team where the 

developers are responsible for both producing code  

and doing QA, it’s clear there is no single formula for  

BDD adoption. 

Likewise, there is no one-size-fits-all solution for auto-

mation. Behavior-Driven Development emerged from 

a recognition that no amount of up-front planning will 

eliminate a project’s unique challenges. BDD does not 

try to supply an all-purpose formula or rigid approach 

to software projects. Rather, it provides practices that, 

when used to support the situation at hand, helps  

teams better meet those challenges. BDD fosters  

communication and encourages the willingness to  

work together through the entire cycle.

By sharing our experiences – the successes and the false 

starts – as well as the tools we build to help us deliver 

quality web applications, we create a dynamic for the 

unique value our work brings to our customers.

Footnotes

 About The Lead Author

1 Introducing the Three Amigos: http://wdog.it/lsd/1/intro 

2 The Three Amigos in Agile Teams: http://wdog.it/lsd/1/agile 

3 Liz Keogh blog from 2008: http://wdog.it/lsd/1/liz

4 Behat: http://wdog.it/lsd/1/behat

5 Mink: http://wdog.it/lsd/1/mink 

6 Drupal Behat extension: http://wdog.it/lsd/1/drupal 

7  Other Drupal modules that assist in using Behat:  

http://wdog.it/lsd/1/modules 

8 BDD in Drupal 8 core: http://wdog.it/lsd/1/core

9  DoctrineDataFixtures Behat extension:  

http://wdog.it/lsd/1/ddf

@featureset Sometimes, it’s enough to organize 

feature files in directories, but often that doesn’t provide 

enough flexibility. Linking related features and scenarios 

with a common tag will allow developers to run auto-

mated scenarios locally that focus on the work at hand, 

reducing their cognitive load as they check their work, 

increasing the value of the feedback they receive, and 

increasing the speed with which they receive feedback.

@partner For scenarios that involve 3rd party services 

and systems.

@wip The work in progress (wip) tag is meant for  

scenarios that are not completely automated or where 

the feature is not completely implemented. These are 

typically excluded from runs since they’re expected to 

fail. Consider differentiating between the two situations.

Stop code from moving forward until  
tests pass.
When test failures stop code from moving forward, a 

lot of collaboration takes place to solve the problem. 

The code and the tests, and ultimately the organization, 

benefit. Achieving this collaboration is another reason 

why buy-in from the entire team, including those who 

prioritize the tech team’s time, is so important.

Emphasize quality and value over coverage.
When it comes to automation, false failures can  

undermine your entire effort. Only include your most 

reliable, valuable scenarios in the continuous integration 

process; rely on manual testing where automated  

success is unreliable. 

Make solving test failures  an entire  
team activity.
When tests are required to pass before code can be  

integrated, engineers have an incentive to help each  

other. In some cases, project managers will expedite  

getting tests for important features running, giving the 

tech team (developers and QA) time to work on them.

Have your test reports delivered to where your 
developers already are.
CI systems can be configured to report into chat  

programs (irc, skype, slack, etc.) and email mail lists. 

Developers see pass/fails instantly, and such reporting 

introduces the social aspect of “who broke the build” that 

leads to fixing bugs closer to the time they’re introduced, 

which can foster more collaborative development.

Implement BDD Agilely.
When you implement Behat, do it in an Agile way;  

iterate, getting feedback from all the stakeholders 

throughout the process.  

Automating scenarios for third-party services 
is difficult and valuable.
When you’re running functional tests that involve 

third-party services, you’ve gone beyond code. You’re 

testing your infrastructure, the third-party infrastructure, 

their code, and the connectivity. But it can also give you 

information about third-party reliability. Tagging such 

tests will allow you to isolate them so they can be  

included and excluded at the appropriate times during 

your development cycle. 

Automation can create trust.
When it once took 50 days to regression test and a fail-

ure was reported, developers would invariably ask "What 

else broke?" It wasn’t possible to answer that question 

without completing the entire 50 days of manual testing. 

Now that those tests are automated and run in eight 

hours, we can tell the developers what else broke, and 

fixing the regression becomes the team’s main focus. 

CC
 IM

A
GE

 C
O

U
RT

ES
 O

F 
SE

TH
 A

N
DE

R
SO

N
 (S

W
A

N
SK

A
LO

T)
O

N
 F

LI
CK

R

Conclusion

Melissa Anderson has worked in software development since 1994. In the early days 

of the Web, she taught high school language arts, provided software support when 

people still submitted tickets by fax, and was associate publisher of Windows Tech 

Journal, a print magazine for Windows programmers.

After web access became more common, she worked as a systems administrator, 

information architect, and web developer. She has been using Drupal since 2006 as 

a project manager, site builder, and trainer with a passion for quality assurance and 

user experience. She has been an active community member, helping to bring Git to 

Drupal.org and leading the initiative for automated functional testing for Drupal.org. 

She co-maintains the Behat Drupal Extension.

Melissa enjoys amplifying the effectiveness of others by coordinating communica-

tion and and keeping focus on producing value. She enjoys creating and maintaining 

systems, both social and technical, that support organizations and the people within 

them in their pursuit of quality. She is currently a Manager at Tag1 Consulting.

16  |  Behavior-Driven Development A Large Scale Drupal Guide  |  17



Cucumber
Cucumber is an open source Ruby based tool patterned 

after the work completed by Dan North in his Java based 

jBehave tool.  It accommodates the same user story 

patterns dictated by North. It also expands and extends 

this functionality with the ability to create stored tables 

of information within a user story. For example, a list of 

user names and passwords can be stored in the test to 

recursively test against the user story.

Cucumber is recommended for teams whose testing 

groups or resources are familiar with Ruby and not profi-

cient in PHP.  The tool is well known and well supported.

Website: http://cukes.info/

Behave
Behave is an open source Python based tool patterned 

after the work North completed for JBehave. It is actively 

maintained, and implements the same user stories and 

testing styles supported in JBehave and the other tools 

listed in this section.

Behave is recommended for teams whose testing groups 

or resources are familiar with Python and not proficient in 

PHP.  The tool is well known and supported.

Website: http://pythonhosted.org/behave/

Browser Tooling
Selenium
Selenium is an open source Java based application that 

provides an abstracted API for browser access. It is run on 

a host server and opens ports on the host for access by 

other programs to interact with. It is widely used for  

acceptance testing in QA teams who often write their 

own scripts that use Selenium’s API directly. Within  

BDD toolsets, programmers typically use the toolsets 

provided API instead of writing code that interacts  

with Selenium.

Selenium can access Firefox directly via Firefox’s own 

API. Other browsers require "Web Drivers" which are 

standalone applications that provide functionality similar 

to what Firefox provides natively.

Website: http://docs.seleniumhq.org/

Additional Web Drivers for Selenium
• Chrome: http://wdog.it/lsd/1/chrome

• Safari: http://wdog.it/lsd/1/safari

• Opera: http://wdog.it/lsd/1/opera

• Internet Explorer: http://wdog.it/lsd/1/ie

• Android: http://wdog.it/lsd/1/android

• IOS (iPhone, iPad, iPod): http://wdog.it/lsd/1/ios

• Windows Phone: http://wdog.it/lsd/1/windows

•  Selenium Webdriver (used for PhantomJS browser): 
http://wdog.it/lsd/1/selenium

•  Hosted Web Drivers (Saas): Sauce Labs supports all 
major browsers for both mobile and desktop:  
http://wdog.it/lsd/1/sauce

Headless Browsers
A headless browser is a web browser without the  

graphical user interface, useful in test automation.

PhantomJS implements the Webkit code (also used  

originally by Chrome/Safari) and supports JavaScript: 

http://wdog.it/lsd/1/phantom

Zombie.js is a Node.js project that also requires Python 

and supports JavaScript: http://wdog.it/lsd/1/zombie

Goutte is a php application that can be driven by Behat 

and does not support JavaScript: http://wdog.it/lsd/1/

goutte

Sahi
Sahi is an open source special case tool that provides  

a framework for creating browser based testing scripts. 

Scripts can be created in any browser, and executed  

in other browsers. It is written to be cross-browser  

compliant for operation.

Behat can integrate with Sahi to execute scripts.

Website: http://wdog.it/lsd/1/sahi

BDD Frameworks
BDD frameworks typically consist of story or test parsers 

that parse through user stories and map each line  

to functions for execution. Upon execution, these  

frameworks conduct tests in real browsers. Browsers  

can be headless (no display) or regular. Browsers are 

remote controlled through APIs, or through controlling 

servers (drivers) that implement APIs. As the APIs are 

often not consistent, these tools tend to also incorpo-

rate their own abstracted APIs that understand how to 

perform common functions in a variety of Browsers and 

Browser drivers.

For teams that need a fairly full suite of browsers to test 

against, Saas options are available that host all popular 

desktop browsers, as well as iOS (iPad, iPhone, iPod) and 

Android webkit.

Each framework comes with a full suite of tests that can 

be incorporated into user stories.  Each also provides  

accommodation for programmers to create new functions 

with their own language strings for user stories. Teams 

who will need to create their own custom test functions 

will need to ensure that the framework chosen is written 

in the programming language their team can support. 

Since Drupal is a PHP framework, and teams  

programming for Drupal will already be equipped to  

program in PHP, we will focus primarily on usage of  

Behat. Others are being included for broader options,  

for teams that may need or want them.  

We will use and extend the Drupal community’s exten-

sion for Drupal to widen options for our community. Any 

gains made in our project-bound extension will be made 

available to the Drupal extension developers for inclusion, 

if applicable.

Behat
Behat is an open source PHP based tool that extends 

and uses the Symfony PHP framework. This is the same 

framework that Drupal 8 is built on and will provide some 

familiarity for Drupal 8 developers with respect to setup 

and configuration, but knowledge of either Drupal 8 or 

Symfony are not needed to use this tool.  

Behat was a fork based on Cucumber and ported to PHP. 

Theirs is a fairly popular Drupal community extension 

that is well supported, and also an active community  

constantly discussing it at Drupal.org.

Behat supports a long list of both regular and headless 

browsers and uses Selenium to drive common  

desktop/mobile browsers. In addition to requiring  

Selenium access, users who choose Behat for local 

testing on their own computers will also need to install 

special drivers for most common browsers. The only 

desktop/mobile browser we found that did not require its 

own driver was Firefox, and Firefox requires fewer tests 

modifications to support its DOM. Drivers are available 

for Webkit (Chrome/Safari), all of the supported IE’s, as 

well as iOS, Android, Windows Phone, and Opera.

Website: http://behat.org/

JBehave
JBehave is an open source Java based tool written initially 

by Dan North to explore the BDD concept in a real toolset. 

It is actively maintained and implements the BDD  

concept as envisioned by North.

JBehave is recommended for teams whose testing groups 

or resources are familiar with Java and not proficient in 

PHP.  The tool is well known and well supported.

Website: http://jbehave.org/

Additional Resources 
So You Want To Know More...

CC
 IM

A
GE

 C
O

U
RT

ES
Y 

O
F 

SA
M

 D
R

O
EG

E 
(U

SG
SB

M
IL

) O
N

 F
LI

CK
R

18  |  Behavior-Driven Development A Large Scale Drupal Guide  |  19



Related LSD BDD 
Software Projects  
and Tooling
Over the last year the LSD Program has worked with our 

Partners and Members on several exciting open source 

BDD projects and initiatives. For each of the projects 

highlighted below, you can access the code and view a 

quick video demo. Check out our recent BDD Prototypes & 

Tooling webinar* to see the following projects covered in 

greater detail:

BDD Use Case Editor
The use case Editor is a robust GUI that enables 

non-technical stakeholders to engage (write, edit, run, 

record, and view tests/use cases) in enterprise BDD. The 

tests run via a 3rd party SaaS integration with Sauce 

Labs; the project was led by an LSD Member in the 

Pharma & Life Sciences sector, and Appnovation, with 

participation and contribution from other Members and 

Partners.

Project: http://wdog.it/lsd/1/uce  

Vagrant image: http://wdog.it/lsd/1/uce2  

Video demo: http://wdog.it/lsd/1/uce3

BehatRunner
BehatRunner is a development tool that resolves all 

prerequisites for running behat, auto-discovers/finds and 

helps manage and run Behat tests locally on your dev 

machine (drush & gui), and standardizes how everyone 

should store Behat tests. The project is led by Acquia  

and funded in part by an LSDMember in the Media & 

Entertainment sector.

Project: http://wdog.it/lsd/1/br   

Video demo: http://wdog.it/lsd/1/br2

BDD for local development  
environments
This is a lightweight powerful Continuous Integration 

(CI) toolchain for local dev machines that enables true 

test-driven development – Behat tests run on file  

save – all on your local machine. It is led by Phase2  

and funded by an LSD Member in the Media &  

Entertainment sector.

Project: http://wdog.it/lsd/1/ci  

Vagrant image: http://wdog.it/lsd/1/ci2  

Video demo: http://wdog.it/lsd/1/ci3

* BDD Prototypes & Tooling webinar: http://wdog.it/lsd/1/webinar 

Task Runners  
and Build Tools
Task runners and build tools play a supporting role in  

a continuous integration and testing framework. These 

tools allow defining jobs or tasks that consist of a  

sequence of operations to perform. Some tools (like 

Grunt) use a programming language (JavaScript) for  

defining jobs, while other tools (like Phing) depend  

on configuration files (structured with XML). These  

tools provide ways to integrate with other common  

components of a build, testing, and deployment system, 

such as version control systems, code quality checking 

tools, asset minification, and much more.

Grunt
Grunt is an open source general purpose JavaScript-based 

task-runner that uses Node.js. It is supported by a  

large base of plugins, both officially maintained and 

community contributed, each of which provides support 

for a specific task (e.g. making a directory, minifying CSS 

files, or validating JavaScript with JSHint). These generic 

plugins are then configured with project-specific settings 

in the Gruntfile.js included with the project.

Website: http://wdog.it/lsd/1/grunt

Phing
Phing is an open source PHP-based build tool based on 

Apache Ant. Its primary focus is building, testing, and 

packaging/deploying code, but it is agnostic on the  

steps involved in these processes for any given project.  

It includes a core set of tasks that cover most basic  

build processes and a set of optional tasks that provide 

integration with common tools. For example, the  

core tasks include basic if-else conditionals and file  

management tasks, while the optional tasks provide  

Git and documentation generation integrations.

Website: http://wdog.it/lsd/1/phing

20  |  Behavior-Driven Development A Large Scale Drupal Guide  |  21


